p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.671C24, C24.446C23, C22.3372- 1+4, C22.4442+ 1+4, C23.194(C4○D4), (C22×C4).588C23, (C23×C4).171C22, (C2×C42).702C22, C23.8Q8.63C2, C23.4Q8.26C2, C23.34D4.34C2, C23.11D4.50C2, C2.95(C22.32C24), C24.C22.70C2, C23.63C23⋊175C2, C23.83C23⋊109C2, C23.65C23⋊146C2, C2.C42.375C22, C2.43(C22.57C24), C2.40(C22.53C24), C2.96(C22.33C24), C2.109(C22.46C24), (C2×C4).221(C4○D4), (C2×C4⋊C4).481C22, C22.532(C2×C4○D4), (C2×C22⋊C4).72C22, SmallGroup(128,1503)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.671C24
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=dc=cd, f2=g2=cb=bc, faf-1=ab=ba, ac=ca, ad=da, eae-1=abc, ag=ga, bd=db, fef-1=be=eb, bf=fb, bg=gb, geg-1=ce=ec, cf=fc, cg=gc, de=ed, gfg-1=df=fd, dg=gd >
Subgroups: 372 in 196 conjugacy classes, 88 normal (22 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C24, C2.C42, C2.C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C23×C4, C23.34D4, C23.8Q8, C23.63C23, C24.C22, C23.65C23, C23.11D4, C23.4Q8, C23.83C23, C23.671C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.32C24, C22.33C24, C22.46C24, C22.53C24, C22.57C24, C23.671C24
(2 38)(4 40)(6 24)(8 22)(10 28)(12 26)(13 45)(14 60)(15 47)(16 58)(17 49)(18 64)(19 51)(20 62)(29 57)(30 48)(31 59)(32 46)(33 61)(34 52)(35 63)(36 50)(42 56)(44 54)
(1 23)(2 24)(3 21)(4 22)(5 37)(6 38)(7 39)(8 40)(9 41)(10 42)(11 43)(12 44)(13 45)(14 46)(15 47)(16 48)(17 49)(18 50)(19 51)(20 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 61)(34 62)(35 63)(36 64)
(1 5)(2 6)(3 7)(4 8)(9 55)(10 56)(11 53)(12 54)(13 59)(14 60)(15 57)(16 58)(17 63)(18 64)(19 61)(20 62)(21 39)(22 40)(23 37)(24 38)(25 43)(26 44)(27 41)(28 42)(29 47)(30 48)(31 45)(32 46)(33 51)(34 52)(35 49)(36 50)
(1 7)(2 8)(3 5)(4 6)(9 53)(10 54)(11 55)(12 56)(13 57)(14 58)(15 59)(16 60)(17 61)(18 62)(19 63)(20 64)(21 37)(22 38)(23 39)(24 40)(25 41)(26 42)(27 43)(28 44)(29 45)(30 46)(31 47)(32 48)(33 49)(34 50)(35 51)(36 52)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 45 37 59)(2 14 38 32)(3 47 39 57)(4 16 40 30)(5 31 23 13)(6 60 24 46)(7 29 21 15)(8 58 22 48)(9 35 27 17)(10 64 28 50)(11 33 25 19)(12 62 26 52)(18 42 36 56)(20 44 34 54)(41 63 55 49)(43 61 53 51)
(1 41 37 55)(2 28 38 10)(3 43 39 53)(4 26 40 12)(5 27 23 9)(6 42 24 56)(7 25 21 11)(8 44 22 54)(13 51 31 61)(14 34 32 20)(15 49 29 63)(16 36 30 18)(17 57 35 47)(19 59 33 45)(46 62 60 52)(48 64 58 50)
G:=sub<Sym(64)| (2,38)(4,40)(6,24)(8,22)(10,28)(12,26)(13,45)(14,60)(15,47)(16,58)(17,49)(18,64)(19,51)(20,62)(29,57)(30,48)(31,59)(32,46)(33,61)(34,52)(35,63)(36,50)(42,56)(44,54), (1,23)(2,24)(3,21)(4,22)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,61)(34,62)(35,63)(36,64), (1,5)(2,6)(3,7)(4,8)(9,55)(10,56)(11,53)(12,54)(13,59)(14,60)(15,57)(16,58)(17,63)(18,64)(19,61)(20,62)(21,39)(22,40)(23,37)(24,38)(25,43)(26,44)(27,41)(28,42)(29,47)(30,48)(31,45)(32,46)(33,51)(34,52)(35,49)(36,50), (1,7)(2,8)(3,5)(4,6)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)(32,48)(33,49)(34,50)(35,51)(36,52), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,45,37,59)(2,14,38,32)(3,47,39,57)(4,16,40,30)(5,31,23,13)(6,60,24,46)(7,29,21,15)(8,58,22,48)(9,35,27,17)(10,64,28,50)(11,33,25,19)(12,62,26,52)(18,42,36,56)(20,44,34,54)(41,63,55,49)(43,61,53,51), (1,41,37,55)(2,28,38,10)(3,43,39,53)(4,26,40,12)(5,27,23,9)(6,42,24,56)(7,25,21,11)(8,44,22,54)(13,51,31,61)(14,34,32,20)(15,49,29,63)(16,36,30,18)(17,57,35,47)(19,59,33,45)(46,62,60,52)(48,64,58,50)>;
G:=Group( (2,38)(4,40)(6,24)(8,22)(10,28)(12,26)(13,45)(14,60)(15,47)(16,58)(17,49)(18,64)(19,51)(20,62)(29,57)(30,48)(31,59)(32,46)(33,61)(34,52)(35,63)(36,50)(42,56)(44,54), (1,23)(2,24)(3,21)(4,22)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,61)(34,62)(35,63)(36,64), (1,5)(2,6)(3,7)(4,8)(9,55)(10,56)(11,53)(12,54)(13,59)(14,60)(15,57)(16,58)(17,63)(18,64)(19,61)(20,62)(21,39)(22,40)(23,37)(24,38)(25,43)(26,44)(27,41)(28,42)(29,47)(30,48)(31,45)(32,46)(33,51)(34,52)(35,49)(36,50), (1,7)(2,8)(3,5)(4,6)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)(32,48)(33,49)(34,50)(35,51)(36,52), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,45,37,59)(2,14,38,32)(3,47,39,57)(4,16,40,30)(5,31,23,13)(6,60,24,46)(7,29,21,15)(8,58,22,48)(9,35,27,17)(10,64,28,50)(11,33,25,19)(12,62,26,52)(18,42,36,56)(20,44,34,54)(41,63,55,49)(43,61,53,51), (1,41,37,55)(2,28,38,10)(3,43,39,53)(4,26,40,12)(5,27,23,9)(6,42,24,56)(7,25,21,11)(8,44,22,54)(13,51,31,61)(14,34,32,20)(15,49,29,63)(16,36,30,18)(17,57,35,47)(19,59,33,45)(46,62,60,52)(48,64,58,50) );
G=PermutationGroup([[(2,38),(4,40),(6,24),(8,22),(10,28),(12,26),(13,45),(14,60),(15,47),(16,58),(17,49),(18,64),(19,51),(20,62),(29,57),(30,48),(31,59),(32,46),(33,61),(34,52),(35,63),(36,50),(42,56),(44,54)], [(1,23),(2,24),(3,21),(4,22),(5,37),(6,38),(7,39),(8,40),(9,41),(10,42),(11,43),(12,44),(13,45),(14,46),(15,47),(16,48),(17,49),(18,50),(19,51),(20,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,61),(34,62),(35,63),(36,64)], [(1,5),(2,6),(3,7),(4,8),(9,55),(10,56),(11,53),(12,54),(13,59),(14,60),(15,57),(16,58),(17,63),(18,64),(19,61),(20,62),(21,39),(22,40),(23,37),(24,38),(25,43),(26,44),(27,41),(28,42),(29,47),(30,48),(31,45),(32,46),(33,51),(34,52),(35,49),(36,50)], [(1,7),(2,8),(3,5),(4,6),(9,53),(10,54),(11,55),(12,56),(13,57),(14,58),(15,59),(16,60),(17,61),(18,62),(19,63),(20,64),(21,37),(22,38),(23,39),(24,40),(25,41),(26,42),(27,43),(28,44),(29,45),(30,46),(31,47),(32,48),(33,49),(34,50),(35,51),(36,52)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,45,37,59),(2,14,38,32),(3,47,39,57),(4,16,40,30),(5,31,23,13),(6,60,24,46),(7,29,21,15),(8,58,22,48),(9,35,27,17),(10,64,28,50),(11,33,25,19),(12,62,26,52),(18,42,36,56),(20,44,34,54),(41,63,55,49),(43,61,53,51)], [(1,41,37,55),(2,28,38,10),(3,43,39,53),(4,26,40,12),(5,27,23,9),(6,42,24,56),(7,25,21,11),(8,44,22,54),(13,51,31,61),(14,34,32,20),(15,49,29,63),(16,36,30,18),(17,57,35,47),(19,59,33,45),(46,62,60,52),(48,64,58,50)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | ··· | 4P | 4Q | ··· | 4V |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | C4○D4 | 2+ 1+4 | 2- 1+4 |
kernel | C23.671C24 | C23.34D4 | C23.8Q8 | C23.63C23 | C24.C22 | C23.65C23 | C23.11D4 | C23.4Q8 | C23.83C23 | C2×C4 | C23 | C22 | C22 |
# reps | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 4 | 8 | 4 | 2 | 2 |
Matrix representation of C23.671C24 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 4 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 3 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 3 | 0 | 0 |
0 | 0 | 4 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,4,0,0,0,0,4,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,4,0,0,0,0,1,0],[0,1,0,0,0,0,4,0,0,0,0,0,0,0,1,3,0,0,0,0,0,4,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,4,0,0,0,0,3,2,0,0,0,0,0,0,3,0,0,0,0,0,0,2] >;
C23.671C24 in GAP, Magma, Sage, TeX
C_2^3._{671}C_2^4
% in TeX
G:=Group("C2^3.671C2^4");
// GroupNames label
G:=SmallGroup(128,1503);
// by ID
G=gap.SmallGroup(128,1503);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,672,253,344,758,723,268,1571,346]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=d*c=c*d,f^2=g^2=c*b=b*c,f*a*f^-1=a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c,a*g=g*a,b*d=d*b,f*e*f^-1=b*e=e*b,b*f=f*b,b*g=g*b,g*e*g^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,g*f*g^-1=d*f=f*d,d*g=g*d>;
// generators/relations